Pythagorean Theorem

c^{2} = a^{2} + b^{2} 
Try this Drag the orange dots on each
vertex
of the right triangle below. The formula showing the calculation of the Pythagorean Theorem will change accordingly.
Although Pythagoras' name is attached to this theorem,
it was actually known centuries before his time by the Babylonians.
There are many proofs of this theorem,
some graphical in nature and others using algebra.
See A graphical proof of the Pythagorean Theorem for one such proof.
On the web site "cuttheknot", the author collects proofs of the Pythagorean Theorem, and as of
this writing has listed over 70, but hundreds are actually known.
Solving the right triangle
The term "solving the triangle" means that if we start with a right triangle and know any two sides, we can find, or 'solve for', the unknown side.
This involves a simple rearrangement of the Pythagoras Theorem formula to put the unknown on the left side of the equation.
Find the hypotenuse
If we know the two legs of a right triangle we can solve for the hypotenuse using the formula:
where a and b are the lengths of the two legs of the triangle, and
h is the hypotenuse.
Find a leg
If we know the hypotenuse and one leg, we can find the other leg using the formula:
where a is the leg we wish to find
b is the known leg
h is the hypotenuse.
The Converse of the Pythagorean Theorem
The converse of this theorem is also true. That is, if a triangle satisfies Pythagoras' theorem, then it is a right triangle.
Put another way, only right triangles will satisfy the theorem.
Things to try
 In the figure above, click on 'reset'.
 Check one of the 'hide' checkboxes.
 Adjust the triangle by dragging an orange dot.
 Use the Pythagorean Theorem to find the missing side.
 Uncheck the 'hide' box to check your answer.
Other triangle topics
General
Perimeter / Area
Triangle types
Triangle centers
Congruence and Similarity
Solving triangles
Triangle quizzes and exercises
(C) 2011 Copyright Math Open Reference.
All rights reserved