Area vs Perimeter of a triangle
Try this
Drag the orange dot on the triangle below. The triangle will have a fixed
perimeter, but the
area will vary.
A common error is to assume that a triangle that has a fixed
perimeter
must also have a fixed
area.
This is definitely not the case as can be seen from the figure above. As you drag the orange point A,
the triangle will maintain a fixed perimeter. But as you can see, the area varies quite a bit.
When A is half way between B and C, the area is at a maximum. As you drag it around towards one side you can see the
area decreasing, both in the formula at the top and by noticing that fewer and fewer squares can fit inside it.
Eventually, when A is in line with B and C, the area is zero.
The area is at a maximum when the triangle is
isosceles.
That is, when both sides have the same length. Carefully adjust A above
to create an isosceles triangle and note the area is the greatest when AC and AB are both the same length (9.0)
Try it with string
Make a loop of string and pass it around two pins (corresponding to the two points B and C above).
Pull the string taut with a third pin to make a triangle. As you move any pin with the string tight,
you will be making triangles with different areas but the perimeter is fixed (the length of the string loop).
The Ellipse Connection
In the figure above, select the "Show trail" checkbox, then drag point A all the way around the base line.
The resulting shape is an
ellipse.
Why is this? The definition of an ellipse is
"A line forming a closed loop, where the sum of the distances from two points (foci) to every point on the line is constant"
Points B and C form the two foci. Since the distance from B to C is fixed, and the perimeter is fixed, then the sum of the distances AB and AC are
constant  the condition required to form an ellipse.
Learn more about Ellipses
The string experiment described above is actually a practical way to draw an ellipse.
See Drawing an ellipse using string and 2 pins. For more on ellipses, see also
Definition of an ellipse.
While you are here..
... I have a small favor to ask. Over the years we have used advertising to support the site so it can remain free for everyone.
However, advertising revenue is falling and I have always hated the ads. So, would you go to Patreon and become a patron of the site?
When we reach the goal I will remove all advertising from the site.
It only takes a minute and any amount would be greatly appreciated.
Thank you for considering it! – John Page
Become a patron of the site at patreon.com/mathopenref
Other triangle topics
General
Perimeter / Area
Triangle types
Triangle centers
Congruence and Similarity
Solving triangles
Triangle quizzes and exercises
(C) 2011 Copyright Math Open Reference. All rights reserved
