See also General Function Explorer where you can graph up to three functions
of your choice simultaneously using sliders for independent variables as above.
Linear functions
Linear functions are those where the independent variable x never has an exponent larger than 1.
So for example they would not have a var such as 3x^{2} in them. The linear function on this page is the general way we
write the equation of a straight line. It is of the form
y = ax + b

Where:
x,y 
are the coordinates of any point on the line 
a 
is the slope of the line

b 
is the yintercept (where the line crosses the yaxis) 

The a var is the slope of the line and controls its 'steepness'.
A positive value has the slope going up to the right. A negative slope goes down to the right.
The b var is the y intercept  the point where the line crosses the y axis.
Adjust the sliders above to vary the values of a and b,
and note the effects they have on the graph.
Another form
The more common form of the linear function is written y = mx+b,
using m for the slope instead of a. This version is included to be consistent with the quadratic and cubic explorers. If you prefer it the usual way use
Linear explorer (mx+b).
Things to try
The simplest case. Y = constant. (y = b)
 Click 'zero' below each slider
Since a and b are both set to zero, this is the graph of the equation
y = 0x+0. This simplifies to y = 0 and is of course zero for all values of x.
Its graph is therefore a horizontal straight line through the origin.
 Now move the rightmost slider for b and let it settle on, say, 5.
This is the graph of the equation y = 0x+5.
This simplifies to y = 5 and so the function has the value 5 for all values of x.
It is therefore a straight horizontal line through 5 on the y axis.
Play with different values of b and observe the result.
Linear equation. (y = ax+b)
 Click 'reset'
 Click 'zero' under the right b slider.
The value of a is 0.5 and b is zero,
so this is the graph of the equation y = 0.5x+0 which
simplifies to y = 0.5x.
This is a simple linear equation and so is a straight line whose slope is 0.5.
That is, y increases by 0.5 every time x increases by one. Since the slope is positive, the line slopes up and to the right.
Since b is zero, the yintercept is zero and the line passes through the origin (0,0).
Play with the a slider and observe the results, including negative values.
 Click on 'reset' and move the b slider to, say, 8.
The value of a is 0.5 and b is 8,
so this is the graph of y = 0.5x+8.
The effect of changing b from zero to 8 is that the graph has moved upwards and now passes through 8 on the y axis.
 Move both sliders and observe the overall effects of these two coefficients (a and b) working together.
Try it yourself
 Press "reset", then "hide details"
 Adjust the sliders until you see a line that appeals to you
 Estimate the slope and yintercept of the line and write down the equation for the line
 Click on "show details" and see how close you got
Hints
 The point where the line crosses the (vertical) yaxis is the yintercept  b
 For each increase of one on the (horizontal) xaxis, how much does the line go up or down?
This is a, the slope of the line
 If the line goes down and to the right, the slope (a) will be negative.
Coordinate Geometry
In coordinate geometry, the equation for a straight line is usually written y = mx+b. That is, the letter m is used to indicate the slope.
See Equation of a line (coordinate geometry).
While you are here..
... I have a small favor to ask. Over the years we have used advertising to support the site so it can remain free for everyone.
However, advertising revenue is falling and I have always hated the ads. So, would you go to Patreon and become a patron of the site?
When we reach the goal I will remove all advertising from the site.
It only takes a minute and any amount would be greatly appreciated.
Thank you for considering it! – John Page
Become a patron of the site at patreon.com/mathopenref
Other linear equation topics
Linear Function Explorer
(C) 2011 Copyright Math Open Reference. All rights reserved
